Compare commits

...

52 Commits

Author SHA1 Message Date
Hanzhang Ma
9f472b4bf4 add city data 2024-05-13 17:00:59 +02:00
Hanzhang Ma
127f005dcd add city data 2024-05-13 16:59:12 +02:00
Hanzhang Ma
c5edf456c5 move some data to the folder 2024-05-13 16:54:20 +02:00
Hanzhang Ma
d8ece46e14 add city data 2024-05-13 16:52:43 +02:00
Hanzhang Ma
566ebca6cd make factory demand to csv file 2024-05-13 16:49:22 +02:00
Hanzhang Ma
c8c37b756c update pv yield code 2024-05-13 16:48:16 +02:00
Hanzhang Ma
4f1a47d505 update generate data code 2024-05-13 16:47:56 +02:00
Hanzhang Ma
ad9b5e6a19 update generate data code 2024-05-13 16:26:24 +02:00
Hanzhang Ma
33871fba77 done with convert data 2024-05-13 16:09:28 +02:00
Hanzhang Ma
9d143399ed get new intensity file 2024-05-13 15:24:44 +02:00
Hanzhang Ma
72d4ce811e data 2024-05-11 00:03:14 +02:00
Hanzhang Ma
060fa5bff1 v0.0.5 code 2024-05-10 23:57:58 +02:00
Hanzhang Ma
ebebd2d481 add read sell data 2024-05-10 17:40:54 +02:00
Hanzhang Ma
a330946f71 add monthly plots code 2024-05-10 17:29:08 +02:00
Hanzhang Ma
32e8e59c82 read electricity data locally 2024-05-10 17:18:41 +02:00
Hanzhang Ma
c4ec4590c2 Merge branch 'main' of http://ff.mhrooz.xyz:3980/iicd/simple-pv-simulator into main 2024-05-10 13:28:02 +02:00
Hanzhang ma
cb0bd2c3e0 delete the debug code 2024-05-10 10:15:44 +02:00
Hanzhang Ma
4364411485 update draw code 2024-05-10 10:08:08 +02:00
Hanzhang Ma
54dc8b744c for merge 2024-05-10 01:11:17 +02:00
Hanzhang Ma
d4fde202d0 update draw.py 2024-05-10 01:10:55 +02:00
Hanzhang Ma
58a7662a8b fix all draw code 2024-05-10 00:11:34 +02:00
Hanzhang ma
d791ac481a add draw.py 2024-05-09 23:49:48 +02:00
Hanzhang ma
4b72bc6fa3 add some contour code 2024-05-09 13:19:49 +02:00
Hanzhang ma
eb24361ea3 add some contour code 2024-05-09 13:15:53 +02:00
Hanzhang ma
fd3bbbf212 merge 2024-05-09 03:15:24 +02:00
Hanzhang ma
760cdc9c1f wait for merging 2024-05-09 03:11:16 +02:00
Hanzhang ma
23826aed75 wait for merging 2024-05-09 03:09:37 +02:00
Hanzhang Ma
8cf3d6472c add contour code but need to update
update electricity data
2024-05-08 16:07:14 +02:00
Hanzhang ma
c217b6309c add version number and remove some draw code 2024-05-08 09:39:56 +02:00
Hanzhang ma
f85fcd58f2 add save data code 2024-05-07 21:06:03 +02:00
Hanzhang ma
cf7a66276f Merge branch 'main' of http://ff.mhrooz.xyz:3980/iicd/simple-pv-simulator 2024-05-07 20:21:24 +02:00
Hanzhang ma
bf74e87ba0 for merge 2024-05-07 20:21:20 +02:00
Hanzhang Ma
2788aafbf3 add title to the plot title 2024-05-07 20:20:09 +02:00
Hanzhang ma
30e8d968f2 add data 2024-05-07 15:24:27 +02:00
Hanzhang ma
8d040e64a0 fix the output format 2024-05-07 10:27:45 +02:00
Hanzhang ma
202d313684 add a config.json 2024-05-06 21:24:12 +02:00
Hanzhang ma
da69e7e24a convert jupyter notebook to a python file 2024-05-06 21:23:52 +02:00
Hanzhang ma
0f49dba47e add plot attributes 2024-05-06 19:24:11 +02:00
Hanzhang ma
f9b7af6feb add plot code 2024-05-06 19:23:42 +02:00
Hanzhang ma
f51921dd06 Add a readme file 2024-05-06 10:53:01 +02:00
Hanzhang ma
06808d55a1 add plot code' 2024-05-04 16:35:55 +02:00
1679831dbd delete some cache file 2024-05-04 10:02:08 +02:00
651833b521 try to plot a pic 2024-05-04 09:59:27 +02:00
3bc2478cd9 add generate price and read data 2024-05-04 09:59:14 +02:00
b79ffb2416 add data 2024-05-04 09:58:45 +02:00
c0a7b5beff update comment 2024-05-04 09:58:05 +02:00
ed58e34e7e add some old code 2024-05-04 09:57:37 +02:00
88240280ca update variable name 2024-05-03 15:36:02 +02:00
09ef44fc21 update variable name 2024-05-03 15:12:52 +02:00
f7afee2a64 write 2 random data scripts 2024-05-03 15:11:58 +02:00
90c96a512a update variable name 2024-05-03 14:08:18 +02:00
3cc208035a write alpha verison energy system 2024-05-03 14:07:57 +02:00
34 changed files with 369942 additions and 10 deletions

145
EnergySystem.py Normal file
View File

@@ -0,0 +1,145 @@
from config import pv_config, ess_config, grid_config
import pandas as pd
class EnergySystem:
def __init__(self, pv_type: pv_config, ess_type: ess_config, grid_type: grid_config):
self.pv = pv_type
self.ess = ess_type
self.grid = grid_type
self.day_generated = []
self.generated = 0
self.stored = 0
self.hour_stored = []
self.hour_stored_2 = []
self.afford = True
self.cost = self.ess.get_cost() + self.pv.get_cost()
self.overload_cnt = 0
self.spring_week_gen = []
self.summer_week_gen = []
self.autumn_week_gen = []
self.winter_week_gen = []
self.spring_week_soc = []
self.summer_week_soc = []
self.autumn_week_soc = []
self.winter_week_soc = []
self.granularity = 4
self.season_step = self.granularity * 24 * 7 * 12
self.season_start= self.granularity * 24 * 7 * 2
self.week_length = self.granularity * 24 * 7
self.unmet = []
def get_cost(self):
return self.ess.get_cost()+self.pv.get_cost()
# 优先使用PV供电给工厂 - 如果PV输出能满足工厂的需求则直接供电多余的电能用来给ESS充电。
# PV不足时使用ESS补充 - 如果PV输出不足以满足工厂需求首先从ESS获取所需电量。
# 如果ESS也不足以满足需求再从电网获取 - 当ESS中的存储电量也不足以补充时再从电网购买剩余所需电量。
def simulate(self, data, time_interval):
total_benefit = 0
total_netto_benefit = 0
total_gen = 0
for index, row in data.iterrows():
time = row['time']
# sunlight_intensity = row['sunlight']
pv_yield = row['PV yield[kW/kWp]']
factory_demand = row['demand']
electricity_price = row['buy']
sell_price = row['sell']
# electricity_price = self.grid.get_price_for_time(time)
if time == '00:00':
self.day_generated.append(self.generated)
self.generated = 0
if time.endswith('14:00'):
soc = self.ess.storage / self.ess.capacity
self.hour_stored.append(soc)
if time.endswith('08:00'):
soc = self.ess.storage / self.ess.capacity
self.hour_stored_2.append(soc)
generated_pv_power = self.pv.capacity * pv_yield# 生成的功率,单位 kW
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh
self.generated += generated_pv_energy
# pv生成的能量如果比工厂的需求要大
if generated_pv_energy >= factory_demand * time_interval:
# 剩余的能量(kwh) = pv生成的能量 - 工厂需求的功率 * 时间间隔
surplus_energy = generated_pv_energy - factory_demand * time_interval
# 要充到ess中的能量 = min(剩余的能量,ess的充电功率*时间间隔(ess在时间间隔内能充进的电量),ess的容量-ess储存的能量(ess中能冲进去的电量))
charge_to_ess = min(surplus_energy, self.ess.charge_power * time_interval, self.ess.capacity - self.ess.storage)
self.ess.storage += charge_to_ess
surplus_after_ess = surplus_energy - charge_to_ess
# 如果还有电量盈余,且pv功率大于ess的充电功率+工厂的需求功率则准备卖电
if surplus_after_ess > 0 and generated_pv_power > self.ess.charge_power + factory_demand:
sold_to_grid = surplus_after_ess
sell_income = sold_to_grid * sell_price
total_benefit += sell_income
# 节省的能量 = 工厂需求的能量 * 时间段
# total_energy = factory_demand * time_interval
saved_energy = factory_demand * time_interval
# pv比工厂的需求小
else:
# 从ess中需要的电量 = 工厂需要的电量 - pv中的电量
needed_from_ess = factory_demand * time_interval - generated_pv_energy
# 如果ess中存的电量比需要的多
if self.ess.storage * self.ess.loss >= needed_from_ess:
# 取出电量
if self.ess.discharge_power * time_interval * self.ess.loss < needed_from_ess:
discharging_power = self.ess.discharge_power * time_interval
else:
discharging_power = needed_from_ess / self.ess.loss
self.ess.storage -= discharging_power
# 节省下来的能量 = pv的能量 + 放出来的能量
saved_energy = generated_pv_energy + discharging_power * self.ess.loss
else:
# 如果存的电量不够
# 需要把ess中的所有电量释放出来
if self.grid.capacity * time_interval + generated_pv_energy + self.ess.storage * self.ess.loss < factory_demand * time_interval:
self.afford = False
self.overload_cnt+=1
log = f"index: {index}, time: {time}, SoC:{self.ess.storage / self.ess.capacity}%, storage: {self.ess.storage}, pv_gen:{generated_pv_power}, power_demand: {factory_demand}, overload_cnt:{self.overload_cnt}, day:{int(index/96) + 1}"
self.unmet.append((index,time,factory_demand,generated_pv_power))
# with open(f'plots/summary/ess-{self.ess.capacity}-pv-{self.pv.capacity}', 'a') as f:
# f.write(log)
# print(log)
# self.unmet.append(log)
saved_energy = generated_pv_energy + self.ess.storage * self.ess.loss
self.ess.storage = 0
needed_from_grid = factory_demand * time_interval - saved_energy
net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss
# grid_energy += net_grid
# total_energy += net_grid
# print(total_energy)
# 工厂需求量-总能量
# unmet_demand = max(0, factory_demand * time_interval - total_energy)
# benefit = (total_energy - unmet_demand) * electricity_price
total_gen += saved_energy
benefit = (saved_energy) * electricity_price
cost = net_grid * electricity_price
# print(f"time:{time} benefit: {benefit}, cost: {cost}")
total_netto_benefit += benefit
total_benefit += benefit - cost
# # spring
week_start = self.season_start
week_end = self.week_length + week_start
if index in range(week_start, week_end):
self.spring_week_gen.append(generated_pv_power)
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
# summer
# week_start += self.season_step
# week_end += self.season_step
# if index in range(week_start, week_end):
# self.summer_week_gen.append(generated_pv_power)
# self.summer_week_soc.append(self.ess.storage / self.ess.capacity)
# # autumn
# week_start += self.season_step
# week_end += self.season_step
# if index in range(week_start, week_end):
# self.autumn_week_gen.append(generated_pv_power)
# self.autumn_week_soc.append(self.ess.storage / self.ess.capacity)
# week_start += self.season_step
# week_end += self.season_step
# if index in range(week_start, week_end):
# self.winter_week_gen.append(generated_pv_power)
# self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
return (total_benefit, total_netto_benefit, total_gen)

Binary file not shown.

19
README.md Normal file
View File

@@ -0,0 +1,19 @@
# Simple PV Simulator
Feature list:
- [] Draw the entire year's electricity consumption figure.
- [] Draw the entire year's energy generation figure.
- [] Draw a heatmap of the system profit in different configurations.
~~- []Calculate the probability of a successful run.~~
- [] Determine whether the system can run successfully
- [] Calculate the ROI.
- [] Read the configs from the file, including `time granularity`,
- ess: `capacity`, `cost per kW`, `charge power`, `discharge power`, `loss`
- pv: `capacity`, `cost per kW`, `loss`
- grid: `capacity`, `sell price`
- file:
- `lightintensity.xlsx`: record the light intensity. Value in the file should be between 0 and 1
- `factory_power.xlsx`: record the power consumption in the factory. Default time granularity is `15min`
- `combined_data.csv`: This file is generated by the Python script, including the `light` `intensity`, `factory_power`, `time`.
- [] GUI.

Binary file not shown.

Binary file not shown.

35041
combined_data.csv Normal file

File diff suppressed because it is too large Load Diff

47
config.json Normal file
View File

@@ -0,0 +1,47 @@
{
"pv":{
"loss": 0.98,
"cost_per_kW": 200,
"lifetime": 15
},
"ess":{
"loss": 0.98,
"cost_per_kW": 300,
"lifetime": 8
},
"grid":{
"loss": 0.98,
"sell_price": 0.2 ,
"capacity": 5000
},
"pv_capacities":{
"begin": 0,
"end": 50000,
"groups": 11
},
"ess_capacities":{
"begin": 0,
"end": 100000,
"groups": 11
},
"time_interval":{
"numerator": 15,
"denominator": 60
},
"annotated": {
"unmet_prob": false,
"benefit": false,
"cost": false,
"roi": false
},
"figure_size":{
"height": 9,
"length": 10
},
"plot_title":{
"unmet_prob": "Coverage Rate of Factory Electrical Demands",
"cost": "Costs of Microgrid system [m-EUR]",
"benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)",
"roi": "ROI"
}
}

View File

@@ -1,23 +1,34 @@
import pandas as pd
class pv_config:
def __init__(self, capacity, cost_per_kW, pv_lifetime, pv_loss):
def __init__(self, capacity, cost_per_kW, lifetime, loss):
self.capacity = capacity
self.cost_per_kW = cost_per_kW
self.pv_lifetime = pv_lifetime
self.pv_loss = pv_loss
self.lifetime = lifetime
self.loss = loss
def get_cost(self):
return self.capacity * self.cost_per_kW
def get_cost_per_year(self):
return self.capacity * self.cost_per_kW / self.lifetime
class ess_config:
def __init__(self, capacity, cost_per_kW, ess_lifetime, ess_loss, charge_power, discharge_power):
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power):
self.capacity = capacity
self.cost_per_kW = cost_per_kW
self.ess_lifetime = ess_lifetime
self.ess_loss = ess_loss
self.ess_storage = 0
self.lifetime = lifetime
self.loss = loss
self.storage = 0
self.charge_power = charge_power
self.discharge_power = discharge_power
def get_cost(self):
return self.capacity * self.cost_per_kW
def get_cost_per_year(self):
return self.capacity * self.cost_per_kW / self.lifetime
class grid_config:
def __init__(self, price_schedule, grid_loss):
self.price_schedule = price_schedule
def __init__(self, capacity, grid_loss, sell_price):
# self.price_schedule = price_schedule
self.loss = grid_loss
self.sell_price = sell_price
self.capacity = capacity
def get_price_for_time(self, time):
hour, minute = map(int, time.split(':'))

11
convert.py Normal file
View File

@@ -0,0 +1,11 @@
import nbformat
from nbconvert import PythonExporter
with open('main.ipynb', "r", encoding="utf-8") as f:
notebook = nbformat.read(f, as_version = 4)
exporter = PythonExporter()
python_code, _ = exporter.from_notebook_node(notebook)
with open('main.py', "w", encoding="utf-8") as f:
f.write(python_code)

209
draw.py Normal file
View File

@@ -0,0 +1,209 @@
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.ticker import FuncFormatter
import numpy as np
import pandas as pd
import os
import seaborn as sns
import json
from matplotlib.colors import LinearSegmentedColormap
def read_data(file_name: str):
with open(file_name, 'r') as f:
data = json.load(f)
for key, value in data.items():
for subkey, subvalue in value.items():
data[key][subkey] = float(subvalue)
df = pd.DataFrame.from_dict(data, orient='index')
df = df.T
df.index = pd.to_numeric(df.index)
df.columns = pd.to_numeric(df.columns)
return df
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
df=results
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x,pos):
return '{:.0f}'.format(x/1000)
cmap = sns.color_palette("coolwarm", as_cmap=True)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_benefit)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
df = costs
df = df.astype(int)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}'.format(x / 1000000)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_cost)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10)):
df = overload_cnt
df = (4 * 24 * 365 - df) / (4 * 24 * 365)
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
# print(new_Data)
df = pd.concat([df, new_Data])
plt.figure(figsize=figure_size)
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
ax = sns.heatmap(df, fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
cbar = ax.collections[0].colorbar
cbar.set_ticks([0, 0.25, 0.5, 0.75, 1])
cbar.set_ticklabels(['0%', '25%', '50%', '75%', '100%'])
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}%'.format(x * 100)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.title(title_unmet)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
with open('config.json', 'r') as f:
js_data = json.load(f)
data = pd.read_csv('combined_data.csv')
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
pv_loss = js_data["pv"]["loss"]
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
pv_lifetime = js_data["pv"]["lifetime"]
ess_loss = js_data["ess"]["loss"]
ess_cost_per_kW = js_data["ess"]["cost_per_kW"]
ess_lifetime = js_data["ess"]["lifetime"]
grid_loss = js_data["grid"]["loss"]
sell_price = js_data["grid"]["sell_price"]
grid_capacity = js_data["grid"]["capacity"]
pv_begin = js_data["pv_capacities"]["begin"]
pv_end = js_data["pv_capacities"]["end"]
pv_groups = js_data["pv_capacities"]["groups"]
ess_begin = js_data["ess_capacities"]["begin"]
ess_end = js_data["ess_capacities"]["end"]
ess_groups = js_data["ess_capacities"]["groups"]
annot_unmet = js_data["annotated"]["unmet_prob"]
annot_benefit = js_data["annotated"]["benefit"]
annot_cost = js_data["annotated"]["cost"]
title_unmet = js_data["plot_title"]["unmet_prob"]
title_cost = js_data["plot_title"]["cost"]
title_benefit = js_data["plot_title"]["benefit"]
figure_size = (js_data["figure_size"]["length"], js_data["figure_size"]["height"])
directory = 'data/'
file_list = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
split_files = [f.split('-') for f in file_list]
costs_files = [f for f in split_files if f[-1].endswith('costs.json')]
print(f'find costs files: {costs_files}')
overload_files = [f for f in split_files if f[-1].endswith('overload_cnt.json')]
print(f'find coverage/unmet files: {overload_files}')
results_files = [f for f in split_files if f[-1].endswith('results.json')]
print(f'find profit/benefit files: {results_files}')
costs_dfs = [read_data(directory + '-'.join(f)) for f in costs_files]
overload_dfs = [read_data(directory + '-'.join(f)) for f in overload_files]
results_dfs = [read_data(directory + '-'.join(f)) for f in results_files]
for costs_df, overload_df, results_df in zip(costs_dfs, overload_dfs, results_dfs):
draw_cost(costs_df,
f'plots/costs-ess-{int(costs_df.columns[0])}-{int(costs_df.columns[-1])}-pv-{int(costs_df.index[0])}-{int(costs_df.index[-1])}.png',
title_cost=title_cost,
annot_cost=annot_cost)
draw_overload(overload_df,
f'plots/overload-ess-{overload_df.columns[0]}-{overload_df.columns[-1]}-pv-{overload_df.index[0]}-{overload_df.index[-1]}.png',
title_unmet=title_unmet,
annot_unmet=False)
draw_results(results_df,
f'plots/results-ess-{results_df.columns[0]}-{results_df.columns[-1]}-pv-{results_df.index[0]}-{results_df.index[-1]}.png',
title_benefit=title_benefit,
annot_benefit=False)

BIN
factory_power.xlsx Normal file

Binary file not shown.

BIN
factory_power1.xlsx Normal file

Binary file not shown.

BIN
lightintensity.xlsx Normal file

Binary file not shown.

BIN
main.exe Normal file

Binary file not shown.

534
main.ipynb Normal file
View File

@@ -0,0 +1,534 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import glob\n",
"import shutil\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.ticker as ticker\n",
"from matplotlib.ticker import FuncFormatter\n",
"import numpy as np\n",
"import pandas as pd\n",
"import os\n",
"import seaborn as sns\n",
"import json\n",
"from matplotlib.colors import LinearSegmentedColormap\n",
"\n",
"def clear_folder_make_ess_pv(folder_path):\n",
" if os.path.isdir(folder_path):\n",
" shutil.rmtree(folder_path)\n",
" os.makedirs(folder_path)\n",
" os.makedirs(os.path.join(folder_path,'ess'))\n",
" os.makedirs(os.path.join(folder_path,'pv'))\n",
"\n",
"folder_path = 'plots'\n",
"clear_folder_make_ess_pv(folder_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import numpy as np\n",
"import pandas as pd\n",
"from EnergySystem import EnergySystem\n",
"from config import pv_config, grid_config, ess_config\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"print(\"Version 0.0.5\")\n",
"\n",
"with open('config.json', 'r') as f:\n",
" js_data = json.load(f)\n",
"\n",
"\n",
" \n",
"\n",
"time_interval = js_data[\"time_interval\"][\"numerator\"] / js_data[\"time_interval\"][\"denominator\"]\n",
"print(time_interval)\n",
"\n",
"pv_loss = js_data[\"pv\"][\"loss\"]\n",
"pv_cost_per_kW = js_data[\"pv\"][\"cost_per_kW\"]\n",
"pv_lifetime = js_data[\"pv\"][\"lifetime\"]\n",
"\n",
"ess_loss = js_data[\"ess\"][\"loss\"]\n",
"ess_cost_per_kW = js_data[\"ess\"][\"cost_per_kW\"]\n",
"ess_lifetime = js_data[\"ess\"][\"lifetime\"]\n",
"\n",
"grid_loss = js_data[\"grid\"][\"loss\"]\n",
"sell_price = js_data[\"grid\"][\"sell_price\"] #kWh\n",
"grid_capacity = js_data[\"grid\"][\"capacity\"] #kWh\n",
"\n",
"pv_begin = js_data[\"pv_capacities\"][\"begin\"]\n",
"pv_end = js_data[\"pv_capacities\"][\"end\"]\n",
"pv_groups = js_data[\"pv_capacities\"][\"groups\"]\n",
"\n",
"ess_begin = js_data[\"ess_capacities\"][\"begin\"]\n",
"ess_end = js_data[\"ess_capacities\"][\"end\"]\n",
"ess_groups = js_data[\"ess_capacities\"][\"groups\"]\n",
"\n",
"annot_unmet = js_data[\"annotated\"][\"unmet_prob\"]\n",
"annot_benefit = js_data[\"annotated\"][\"benefit\"]\n",
"annot_cost = js_data[\"annotated\"][\"cost\"]\n",
"annot_roi = js_data[\"annotated\"][\"roi\"]\n",
"\n",
"title_unmet = js_data[\"plot_title\"][\"unmet_prob\"]\n",
"title_cost = js_data[\"plot_title\"][\"cost\"]\n",
"title_benefit = js_data[\"plot_title\"][\"benefit\"]\n",
"title_roi = js_data[\"plot_title\"][\"roi\"]\n",
"\n",
"\n",
"figure_size = (js_data[\"figure_size\"][\"length\"], js_data[\"figure_size\"][\"height\"])\n",
"\n",
"data = pd.read_csv('combined_data.csv')\n",
"\n",
"granularity = js_data[\"time_interval\"][\"numerator\"]\n",
"\n",
"months_days = [31,28,31,30,31,30,31,31,30,31,30,31]\n",
"def get_month_coe(num, granularity):\n",
" return 60 / granularity * 24 * months_days[num]\n",
"\n",
"months_index = [get_month_coe(num, granularity) for num in range(12)]\n",
"months_data = []\n",
"for i in range(1,12):\n",
" months_index[i] += months_index[i-1]\n",
"for i in range(12):\n",
" start = 0 if i == 0 else months_index[i-1]\n",
" end = months_index[i]\n",
" months_data.append(data.iloc[int(start):int(end)])\n",
" \n",
"\n",
"\n",
"\n",
"pv_capacities = np.linspace(pv_begin, pv_end, pv_groups)\n",
"ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)\n",
"# results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"# affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"# costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hour_demand = []\n",
"for index, row in data.iterrows():\n",
" time = row['time']\n",
" demand = row['demand']\n",
" if time.endswith('00'):\n",
" hour_demand.append(demand)\n",
"plt.figure(figsize=(10,8))\n",
"plt.plot(hour_demand)\n",
"plt.ylabel('Demand Power / kW')\n",
"plt.savefig('plots/demand.png')\n",
"plt.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):\n",
" df=results\n",
" df = df.astype(float)\n",
" df.index = df.index / 1000\n",
" df.index = df.index.map(int)\n",
" df.columns = df.columns / 1000\n",
" df.columns = df.columns.map(int)\n",
" min_value = df.min().min()\n",
" max_value = df.max().max()\n",
" max_scale = max(abs(min_value/1000), abs(max_value/1000))\n",
"\n",
" df[df.columns[-1] + 1] = df.iloc[:, -1] \n",
" new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)\n",
" for i in df.columns:\n",
" new_Data[i] = df[i].iloc[-1]\n",
" df = pd.concat([df, new_Data])\n",
"\n",
" X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))\n",
"\n",
" def fmt(x,pos):\n",
" return '{:.0f}'.format(x/1000)\n",
"\n",
" cmap = sns.color_palette(\"coolwarm\", as_cmap=True)\n",
" plt.figure(figsize=figure_size)\n",
" ax = sns.heatmap(df/1000, fmt=\".1f\", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)\n",
" CS = ax.contour(X, Y, df, colors='black', alpha=0.5)\n",
" ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))\n",
" plt.title(title_benefit)\n",
" plt.gca().invert_yaxis()\n",
" plt.xlim(0, df.shape[1] - 1)\n",
" plt.ylim(0, df.shape[0] - 1)\n",
" plt.xlabel('ESS Capacity (MWh)')\n",
" plt.ylabel('PV Capacity (MW)')\n",
" plt.savefig(filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):\n",
" costs = costs.astype(float)\n",
" costs = costs / 365 \n",
" costs = costs * days\n",
"\n",
" df = results\n",
" df = costs / df\n",
" if 0 in df.index and 0 in df.columns:\n",
" df.loc[0,0] = 100\n",
" df[df > 80] = 100\n",
" print(df)\n",
"\n",
" df = df.astype(float)\n",
" df.index = df.index / 1000\n",
" df.index = df.index.map(int)\n",
" df.columns = df.columns / 1000\n",
" df.columns = df.columns.map(int)\n",
" min_value = df.min().min()\n",
" max_value = df.max().max()\n",
" print(max_value)\n",
" max_scale = max(abs(min_value), abs(max_value))\n",
"\n",
" df[df.columns[-1] + 1] = df.iloc[:, -1] \n",
" new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)\n",
" for i in df.columns:\n",
" new_Data[i] = df[i].iloc[-1]\n",
" df = pd.concat([df, new_Data])\n",
"\n",
" X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))\n",
"\n",
" def fmt(x,pos):\n",
" return '{:.0f}'.format(x)\n",
"\n",
" cmap = sns.color_palette(\"Greys\", as_cmap=True)\n",
" plt.figure(figsize=figure_size)\n",
" ax = sns.heatmap(df, fmt=\".1f\", cmap=cmap, vmin=0, vmax=100, annot=annot_benefit)\n",
" CS = ax.contour(X, Y, df, colors='black', alpha=0.5)\n",
" ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))\n",
" plt.title(title_roi)\n",
" plt.gca().invert_yaxis()\n",
" plt.xlim(0, df.shape[1] - 1)\n",
" plt.ylim(0, df.shape[0] - 1)\n",
" plt.xlabel('ESS Capacity (MWh)')\n",
" plt.ylabel('PV Capacity (MW)')\n",
" plt.savefig(filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):\n",
" df = costs\n",
" df = df.astype(int)\n",
" df.index = df.index / 1000\n",
" df.index = df.index.map(int)\n",
" df.columns = df.columns / 1000\n",
" df.columns = df.columns.map(int)\n",
"\n",
" df[df.columns[-1] + 1] = df.iloc[:, -1] \n",
" new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)\n",
" for i in df.columns:\n",
" new_Data[i] = df[i].iloc[-1]\n",
" df = pd.concat([df, new_Data])\n",
" X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))\n",
"\n",
" def fmt(x, pos):\n",
" return '{:.0f}'.format(x / 1000000)\n",
"\n",
" plt.figure(figsize=figure_size)\n",
" ax = sns.heatmap(df/1000000, fmt=\".1f\", cmap='viridis', annot=annot_cost)\n",
" CS = ax.contour(X, Y, df, colors='black', alpha=0.5)\n",
" ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))\n",
" plt.title(title_cost)\n",
" plt.gca().invert_yaxis()\n",
" plt.xlim(0, df.shape[1] - 1)\n",
" plt.ylim(0, df.shape[0] - 1)\n",
" plt.xlabel('ESS Capacity (MWh)')\n",
" plt.ylabel('PV Capacity (MW)')\n",
" plt.savefig(filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):\n",
" df = overload_cnt\n",
" print(days, granularity)\n",
" coef = 60 / granularity * days * 24\n",
" print(coef)\n",
" print(df)\n",
" df = ( coef - df) / coef\n",
" print(df)\n",
"\n",
" df = df.astype(float)\n",
" df.index = df.index / 1000\n",
" df.index = df.index.map(int)\n",
" df.columns = df.columns / 1000\n",
" df.columns = df.columns.map(int)\n",
"\n",
"\n",
" df[df.columns[-1] + 1] = df.iloc[:, -1] \n",
" new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)\n",
" for i in df.columns:\n",
" new_Data[i] = df[i].iloc[-1]\n",
" # print(new_Data)\n",
" df = pd.concat([df, new_Data])\n",
"\n",
"\n",
" plt.figure(figsize=figure_size)\n",
" cmap = LinearSegmentedColormap.from_list(\"\", [\"white\", \"blue\"])\n",
" ax = sns.heatmap(df, fmt=\".00%\", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)\n",
"\n",
" cbar = ax.collections[0].colorbar\n",
" cbar.set_ticks([0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1])\n",
" cbar.set_ticklabels(['0%', '10%', '20%', '30%', '40%', '50%', '60%', '70%', '80%', '90%', '100%'])\n",
" cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))\n",
" X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))\n",
"\n",
" def fmt(x, pos):\n",
" return '{:.0f}%'.format(x * 100)\n",
" CS = ax.contour(X, Y, df, colors='black', alpha=0.5)\n",
"\n",
" ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))\n",
"\n",
" plt.xlim(0, df.shape[1] - 1)\n",
" plt.ylim(0, df.shape[0] - 1)\n",
" plt.title(title_unmet)\n",
" plt.xlabel('ESS Capacity (MWh)')\n",
" plt.ylabel('PV Capacity (MW)')\n",
" plt.savefig(filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def cal_profit(es: EnergySystem, saved_money, days):\n",
" profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days\n",
" return profit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):\n",
" pv = pv_config(capacity=pv_capacity, \n",
" cost_per_kW=pv_cost_per_kW,\n",
" lifetime=pv_lifetime, \n",
" loss=pv_loss)\n",
" ess = ess_config(capacity=ess_capacity, \n",
" cost_per_kW=ess_cost_per_kW, \n",
" lifetime=ess_lifetime, \n",
" loss=ess_loss,\n",
" charge_power=ess_capacity,\n",
" discharge_power=ess_capacity)\n",
" grid = grid_config(capacity=grid_capacity, \n",
" grid_loss=grid_loss,\n",
" sell_price= sell_price)\n",
" energySystem = EnergySystem(pv_type=pv, \n",
" ess_type=ess, \n",
" grid_type= grid)\n",
" (benefit, netto_benefit, gen_energy) = energySystem.simulate(data, time_interval)\n",
" results = cal_profit(energySystem, benefit, days)\n",
" overload_cnt = energySystem.overload_cnt\n",
" costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW\n",
" return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"months_results = []\n",
"months_costs = []\n",
"months_overload = []\n",
"months_nettos = []\n",
"months_gen_energy = []\n",
"months_gen_energy2 = []\n",
"for index, month_data in enumerate(months_data):\n",
" results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" for pv_capacity in pv_capacities:\n",
" for ess_capacity in ess_capacities:\n",
" (result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])\n",
" results.loc[pv_capacity,ess_capacity] = result\n",
" overload_cnt.loc[pv_capacity,ess_capacity] = overload\n",
" costs.loc[pv_capacity,ess_capacity] = cost\n",
" nettos.loc[pv_capacity,ess_capacity] = netto\n",
" gen_energies.loc[pv_capacity, ess_capacity] = gen_energy\n",
" gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2\n",
" months_results.append(results)\n",
" months_costs.append(costs)\n",
" months_overload.append(overload_cnt)\n",
" months_nettos.append(nettos)\n",
" months_gen_energy.append(gen_energies)\n",
" months_gen_energy2.append(gen_energies2)\n",
" draw_results(results=results, \n",
" filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-benefit.png',\n",
" title_benefit=title_benefit,\n",
" annot_benefit=annot_benefit,\n",
" figure_size=figure_size)\n",
" draw_overload(overload_cnt=overload_cnt, \n",
" filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-unmet.png',\n",
" title_unmet=title_unmet,\n",
" annot_unmet=annot_unmet,\n",
" figure_size=figure_size,\n",
" days=months_days[index],\n",
" granularity=granularity)\n",
"\n",
"annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"\n",
"\n",
"\n",
"# get the yearly results\n",
"for pv_capacity in pv_capacities:\n",
" for ess_capacity in ess_capacities:\n",
" results = 0\n",
" costs = 0\n",
" overload_cnt = 0\n",
" nettos = 0\n",
" gen = 0\n",
" gen2 = 0\n",
" for index, month_data in enumerate(months_data):\n",
" results += months_results[index].loc[pv_capacity,ess_capacity]\n",
" costs += months_costs[index].loc[pv_capacity,ess_capacity]\n",
" overload_cnt += months_overload[index].loc[pv_capacity, ess_capacity]\n",
" nettos += months_nettos[index].loc[pv_capacity, ess_capacity]\n",
" gen += months_gen_energy[index].loc[pv_capacity, ess_capacity]\n",
" gen2 += months_gen_energy[index].loc[pv_capacity, ess_capacity]\n",
" annual_result.loc[pv_capacity, ess_capacity] = results\n",
" annual_costs.loc[pv_capacity, ess_capacity] = costs\n",
" annual_overload.loc[pv_capacity, ess_capacity] = overload_cnt\n",
" annual_nettos.loc[pv_capacity, ess_capacity] = nettos\n",
" annual_gen.loc[pv_capacity, ess_capacity] = gen\n",
" annual_gen2.loc[pv_capacity, ess_capacity] = gen2\n",
"\n",
"draw_cost(costs=annual_costs,\n",
" filename='plots/annual_cost.png',\n",
" title_cost=title_cost,\n",
" annot_cost=annot_cost,\n",
" figure_size=figure_size)\n",
"draw_results(results=annual_result,\n",
" filename='plots/annual_benefit.png',\n",
" title_benefit=title_benefit,\n",
" annot_benefit=annot_benefit,\n",
" figure_size=figure_size)\n",
"draw_overload(overload_cnt=annual_overload,\n",
" filename='plots/annual_unmet.png',\n",
" title_unmet=title_unmet,\n",
" annot_unmet=annot_unmet,\n",
" figure_size=figure_size)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def save_data(data, filename):\n",
" data.to_csv(filename+'.csv')\n",
" data.to_json(filename + '.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.makedirs('data')\n",
"\n",
"save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')\n",
"save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')\n",
"save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"draw_results(annual_result, 'plots/test.png', 'test', False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

419
main.py
View File

@@ -1 +1,418 @@
import matplotlib
#!/usr/bin/env python
# coding: utf-8
import os
import glob
import shutil
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.ticker import FuncFormatter
import numpy as np
import pandas as pd
import os
import seaborn as sns
import json
from matplotlib.colors import LinearSegmentedColormap
def clear_folder_make_ess_pv(folder_path):
if os.path.isdir(folder_path):
shutil.rmtree(folder_path)
os.makedirs(folder_path)
os.makedirs(os.path.join(folder_path,'ess'))
os.makedirs(os.path.join(folder_path,'pv'))
folder_path = 'plots'
clear_folder_make_ess_pv(folder_path)
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from EnergySystem import EnergySystem
from config import pv_config, grid_config, ess_config
import json
print("Version 0.0.5")
with open('config.json', 'r') as f:
js_data = json.load(f)
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
print(time_interval)
pv_loss = js_data["pv"]["loss"]
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
pv_lifetime = js_data["pv"]["lifetime"]
ess_loss = js_data["ess"]["loss"]
ess_cost_per_kW = js_data["ess"]["cost_per_kW"]
ess_lifetime = js_data["ess"]["lifetime"]
grid_loss = js_data["grid"]["loss"]
sell_price = js_data["grid"]["sell_price"] #kWh
grid_capacity = js_data["grid"]["capacity"] #kWh
pv_begin = js_data["pv_capacities"]["begin"]
pv_end = js_data["pv_capacities"]["end"]
pv_groups = js_data["pv_capacities"]["groups"]
ess_begin = js_data["ess_capacities"]["begin"]
ess_end = js_data["ess_capacities"]["end"]
ess_groups = js_data["ess_capacities"]["groups"]
annot_unmet = js_data["annotated"]["unmet_prob"]
annot_benefit = js_data["annotated"]["benefit"]
annot_cost = js_data["annotated"]["cost"]
annot_roi = js_data["annotated"]["roi"]
title_unmet = js_data["plot_title"]["unmet_prob"]
title_cost = js_data["plot_title"]["cost"]
title_benefit = js_data["plot_title"]["benefit"]
title_roi = js_data["plot_title"]["roi"]
figure_size = (js_data["figure_size"]["length"], js_data["figure_size"]["height"])
data = pd.read_csv('combined_data.csv')
granularity = js_data["time_interval"]["numerator"]
months_days = [31,28,31,30,31,30,31,31,30,31,30,31]
def get_month_coe(num, granularity):
return 60 / granularity * 24 * months_days[num]
months_index = [get_month_coe(num, granularity) for num in range(12)]
months_data = []
for i in range(1,12):
months_index[i] += months_index[i-1]
for i in range(12):
start = 0 if i == 0 else months_index[i-1]
end = months_index[i]
months_data.append(data.iloc[int(start):int(end)])
pv_capacities = np.linspace(pv_begin, pv_end, pv_groups)
ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
# results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# In[ ]:
hour_demand = []
for index, row in data.iterrows():
time = row['time']
demand = row['demand']
if time.endswith('00'):
hour_demand.append(demand)
plt.figure(figsize=(10,8))
plt.plot(hour_demand)
plt.ylabel('Demand Power / kW')
plt.savefig('plots/demand.png')
plt.close()
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
df=results
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x,pos):
return '{:.0f}'.format(x/1000)
cmap = sns.color_palette("coolwarm", as_cmap=True)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_benefit)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
# In[ ]:
def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):
costs = costs.astype(float)
costs = costs / 365
costs = costs * days
df = results
df = costs / df
if 0 in df.index and 0 in df.columns:
df.loc[0,0] = 100
df[df > 80] = 100
print(df)
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
print(max_value)
max_scale = max(abs(min_value), abs(max_value))
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x,pos):
return '{:.0f}'.format(x)
cmap = sns.color_palette("Greys", as_cmap=True)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df, fmt=".1f", cmap=cmap, vmin=0, vmax=100, annot=annot_benefit)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_roi)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
df = costs
df = df.astype(int)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}'.format(x / 1000000)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_cost)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):
df = overload_cnt
print(days, granularity)
coef = 60 / granularity * days * 24
print(coef)
print(df)
df = ( coef - df) / coef
print(df)
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
# print(new_Data)
df = pd.concat([df, new_Data])
plt.figure(figsize=figure_size)
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
ax = sns.heatmap(df, fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
cbar = ax.collections[0].colorbar
cbar.set_ticks([0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1])
cbar.set_ticklabels(['0%', '10%', '20%', '30%', '40%', '50%', '60%', '70%', '80%', '90%', '100%'])
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}%'.format(x * 100)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.title(title_unmet)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
def cal_profit(es: EnergySystem, saved_money, days):
profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days
return profit
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):
pv = pv_config(capacity=pv_capacity,
cost_per_kW=pv_cost_per_kW,
lifetime=pv_lifetime,
loss=pv_loss)
ess = ess_config(capacity=ess_capacity,
cost_per_kW=ess_cost_per_kW,
lifetime=ess_lifetime,
loss=ess_loss,
charge_power=ess_capacity,
discharge_power=ess_capacity)
grid = grid_config(capacity=grid_capacity,
grid_loss=grid_loss,
sell_price= sell_price)
energySystem = EnergySystem(pv_type=pv,
ess_type=ess,
grid_type= grid)
(benefit, netto_benefit, gen_energy) = energySystem.simulate(data, time_interval)
results = cal_profit(energySystem, benefit, days)
overload_cnt = energySystem.overload_cnt
costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated)
months_results = []
months_costs = []
months_overload = []
months_nettos = []
months_gen_energy = []
months_gen_energy2 = []
for index, month_data in enumerate(months_data):
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
for pv_capacity in pv_capacities:
for ess_capacity in ess_capacities:
(result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])
results.loc[pv_capacity,ess_capacity] = result
overload_cnt.loc[pv_capacity,ess_capacity] = overload
costs.loc[pv_capacity,ess_capacity] = cost
nettos.loc[pv_capacity,ess_capacity] = netto
gen_energies.loc[pv_capacity, ess_capacity] = gen_energy
gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2
months_results.append(results)
months_costs.append(costs)
months_overload.append(overload_cnt)
months_nettos.append(nettos)
months_gen_energy.append(gen_energies)
months_gen_energy2.append(gen_energies2)
draw_results(results=results,
filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-benefit.png',
title_benefit=title_benefit,
annot_benefit=annot_benefit,
figure_size=figure_size)
draw_overload(overload_cnt=overload_cnt,
filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-unmet.png',
title_unmet=title_unmet,
annot_unmet=annot_unmet,
figure_size=figure_size,
days=months_days[index],
granularity=granularity)
annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# get the yearly results
for pv_capacity in pv_capacities:
for ess_capacity in ess_capacities:
results = 0
costs = 0
overload_cnt = 0
nettos = 0
gen = 0
gen2 = 0
for index, month_data in enumerate(months_data):
results += months_results[index].loc[pv_capacity,ess_capacity]
costs += months_costs[index].loc[pv_capacity,ess_capacity]
overload_cnt += months_overload[index].loc[pv_capacity, ess_capacity]
nettos += months_nettos[index].loc[pv_capacity, ess_capacity]
gen += months_gen_energy[index].loc[pv_capacity, ess_capacity]
gen2 += months_gen_energy[index].loc[pv_capacity, ess_capacity]
annual_result.loc[pv_capacity, ess_capacity] = results
annual_costs.loc[pv_capacity, ess_capacity] = costs
annual_overload.loc[pv_capacity, ess_capacity] = overload_cnt
annual_nettos.loc[pv_capacity, ess_capacity] = nettos
annual_gen.loc[pv_capacity, ess_capacity] = gen
annual_gen2.loc[pv_capacity, ess_capacity] = gen2
draw_cost(costs=annual_costs,
filename='plots/annual_cost.png',
title_cost=title_cost,
annot_cost=annot_cost,
figure_size=figure_size)
draw_results(results=annual_result,
filename='plots/annual_benefit.png',
title_benefit=title_benefit,
annot_benefit=annot_benefit,
figure_size=figure_size)
draw_overload(overload_cnt=annual_overload,
filename='plots/annual_unmet.png',
title_unmet=title_unmet,
annot_unmet=annot_unmet,
figure_size=figure_size)
def save_data(data, filename):
data.to_csv(filename+'.csv')
data.to_json(filename + '.json')
if not os.path.isdir('data'):
os.makedirs('data')
save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')
save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
draw_results(annual_result, 'plots/test.png', 'test', False)
draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)

View File

@@ -0,0 +1,19 @@
import pandas as pd
import numpy as np
start_date = '2023-01-01'
end_date = '2024-01-01'
# 创建时间索引
time_index = pd.date_range(start=start_date, end=end_date, freq='15min')
# 生成电价数据假设电价在0.28到0.32欧元/kWh之间波动
price_data = np.random.uniform(0.28, 0.32, len(time_index))
# 创建DataFrame
price_df = pd.DataFrame(data={'Time': time_index, 'ElectricityPrice': price_data})
# 保存到CSV文件
price_df.to_csv('electricity_price_data.csv', index=False)
print("Electricity price data generated and saved.")

56
old/generatedata.py Normal file
View File

@@ -0,0 +1,56 @@
import pandas as pd
import numpy as np
# 设置随机种子以重现结果
np.random.seed(43)
def simulate_sunlight(hour, month):
# 假设最大日照强度在正午,根据月份调整最大日照强度
max_intensity = 1.0 # 夏季最大日照强度
if month in [12, 1, 2]: # 冬季
max_intensity = 0.6
elif month in [3, 4, 10, 11]: # 春秋
max_intensity = 0.8
# 计算日照强度,模拟早晚日照弱,中午日照强
intensity = max_intensity * np.sin(np.pi * (hour - 6) / 12)**2 if 6 <= hour <= 18 else 0
return intensity
def simulate_factory_demand(hour, day_of_week):
# 周末工厂需求可能减少
if day_of_week in [5, 6]: # 周六和周日
base_demand = 3000
else:
base_demand = 6000
# 日常波动
if 8 <= hour <= 20:
return base_demand + np.random.randint(100, 200) # 白天需求量大
else:
return base_demand - np.random.randint(0, 100) # 夜间需求量小
def generate_data(days=10):
records = []
month_demand = 0
for day in range(days):
month = (day % 365) // 30 + 1
day_of_week = day % 7
day_demand = 0
for hour in range(24):
for minute in [0, 10, 20, 30, 40, 50]:
time = f'{hour:02d}:{minute:02d}'
sunlight = simulate_sunlight(hour, month)
demand = simulate_factory_demand(hour, day_of_week)
day_demand+=demand
records.append({'time': time, 'sunlight': sunlight, 'demand': demand})
print(f"day:{day}, day_demand: {day_demand}")
month_demand += day_demand
if day%30 == 0:
print(f"month:{month}, month_demand:{month_demand}")
month_demand = 0
return pd.DataFrame(records)
# 生成数据
data = generate_data(365) # 模拟一年的数据
data.to_csv('simulation_data.csv', index=False)
print("Data generated and saved to simulation_data.csv.")

View File

@@ -0,0 +1,24 @@
import pandas as pd
import numpy as np
def generate_price_schedule():
records = []
# 假设一天分为三个时段:谷时、平时、峰时
times = [('00:00', '06:00', 0.25),
('06:00', '18:00', 0.3),
('18:00', '24:00', 0.35)]
# 随机调整每天的电价以增加现实性
for time_start, time_end, base_price in times:
# 随机浮动5%以内
fluctuation = np.random.uniform(-0.005, 0.005)
price = round(base_price + fluctuation, 3)
records.append({'time_start': time_start, 'time_end': time_end, 'price': price})
return pd.DataFrame(records)
# 生成电价计划
price_schedule = generate_price_schedule()
price_schedule.to_csv('price_schedule.csv', index=False)
print("Price schedule generated and saved to price_schedule.csv.")
print(price_schedule)

4
old/price_schedule.csv Normal file
View File

@@ -0,0 +1,4 @@
time_start,time_end,price
00:00,06:00,0.247
06:00,18:00,0.3
18:00,24:00,0.349
1 time_start time_end price
2 00:00 06:00 0.247
3 06:00 18:00 0.3
4 18:00 24:00 0.349

52561
old/simulation_data.csv Normal file

File diff suppressed because it is too large Load Diff

39
read_data.py Normal file
View File

@@ -0,0 +1,39 @@
import pandas as pd
import numpy as np
import csv
pv_yield_file_name = 'read_data/Serbia.csv'
# factory_demand_file_name = 'factory_power1.xlsx'
factory_demand_file_name = 'read_data/factory_power1.csv'
electricity_price_data = 'read_data/electricity_price_data.csv'
electricity_price_data_sell = 'read_data/electricity_price_data_sell.csv'
pv_df = pd.read_csv(pv_yield_file_name, index_col='Time', usecols=['Time', 'PV yield[kW/kWp]'])
pv_df.index = pd.to_datetime(pv_df.index)
df_power = pd.read_csv('factory_power1.csv', index_col='Time', usecols=['Time', 'FactoryPower'])
df_power.index = pd.to_datetime(df_power.index)
df_combined = pv_df.join(df_power)
price_df = pd.read_csv(electricity_price_data, index_col='Time', usecols=['Time', 'ElectricityBuy'])
price_df.index = pd.to_datetime(price_df.index)
price_df = price_df.reindex(df_combined.index)
df_combined2 = df_combined.join(price_df)
sell_df = pd.read_csv(electricity_price_data_sell, index_col='Time', usecols=['Time', 'ElectricitySell'])
sell_df.index = pd.to_datetime(sell_df.index)
sell_df = sell_df.reindex(df_combined.index)
df_combined3 = df_combined2.join(sell_df)
with open('combined_data.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['time', 'PV yield[kW/kWp]', 'demand','buy', 'sell'])
cnt = 0
for index, row in df_combined3.iterrows():
time_formatted = index.strftime('%H:%M')
writer.writerow([time_formatted, row['PV yield[kW/kWp]'], row['FactoryPower'],row['ElectricityBuy'], row['ElectricitySell']])
print('The file is written to combined_data.csv')
print("Simulation data with electricity prices has been updated and saved.")

35041
read_data/Berlin.csv Normal file

File diff suppressed because it is too large Load Diff

35041
read_data/Cambodge.csv Normal file

File diff suppressed because it is too large Load Diff

35041
read_data/Marcedonia.csv Normal file

File diff suppressed because it is too large Load Diff

35041
read_data/Riyahd.csv Normal file

File diff suppressed because it is too large Load Diff

35041
read_data/Serbia.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,372 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import csv"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
"def read_csv(filename):\n",
" skip_rows = list(range(1, 17))\n",
" data = pd.read_csv(filename, sep=';', skiprows=skip_rows)\n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_3075037/3659192646.py:3: DtypeWarning: Columns (32,33,35) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" data = pd.read_csv(filename, sep=';', skiprows=skip_rows)\n"
]
},
{
"data": {
"text/plain": [
"Index(['Time', 'Irradiance onto horizontal plane ',\n",
" 'Diffuse Irradiation onto Horizontal Plane ', 'Outside Temperature ',\n",
" 'Module Area 1: Height of Sun ',\n",
" 'Module Area 1: Irradiance onto tilted surface ',\n",
" 'Module Area 1: Module Temperature ', 'Grid Export ',\n",
" 'Energy from Grid ', 'Global radiation - horizontal ',\n",
" 'Deviation from standard spectrum ', 'Ground Reflection (Albedo) ',\n",
" 'Orientation and inclination of the module surface ', 'Shading ',\n",
" 'Reflection on the Module Surface ',\n",
" 'Irradiance on the rear side of the module ',\n",
" 'Global Radiation at the Module ',\n",
" 'Module Area 1: Reflection on the Module Surface ',\n",
" 'Module Area 1: Global Radiation at the Module ',\n",
" 'Global PV Radiation ', 'Bifaciality ', 'Soiling ',\n",
" 'STC Conversion (Rated Efficiency of Module) ', 'Rated PV Energy ',\n",
" 'Low-light performance ', 'Module-specific Partial Shading ',\n",
" 'Deviation from the nominal module temperature ', 'Diodes ',\n",
" 'Mismatch (Manufacturer Information) ',\n",
" 'Mismatch (Configuration/Shading) ',\n",
" 'Power optimizer (DC conversion/clipping) ',\n",
" 'PV Energy (DC) without inverter clipping ',\n",
" 'Failing to reach the DC start output ',\n",
" 'Clipping on account of the MPP Voltage Range ',\n",
" 'Clipping on account of the max. DC Current ',\n",
" 'Clipping on account of the max. DC Power ',\n",
" 'Clipping on account of the max. AC Power/cos phi ', 'MPP Matching ',\n",
" 'PV energy (DC) ',\n",
" 'Inverter 1 - MPP 1 - to Module Area 1: PV energy (DC) ',\n",
" 'Inverter 1 - MPP 2 - to Module Area 1: PV energy (DC) ',\n",
" 'Inverter 1 - MPP 3 - to Module Area 1: PV energy (DC) ',\n",
" 'Inverter 1 - MPP 4 - to Module Area 1: PV energy (DC) ',\n",
" 'Inverter 1 - MPP 5 - to Module Area 1: PV energy (DC) ',\n",
" 'Inverter 1 - MPP 6 - to Module Area 1: PV energy (DC) ',\n",
" 'Inverter 2 - MPP 1 - to Module Area 1: PV energy (DC) ',\n",
" 'Inverter 2 - MPP 2 - to Module Area 1: PV energy (DC) ',\n",
" 'Energy at the Inverter Input ',\n",
" 'Input voltage deviates from rated voltage ', 'DC/AC Conversion ',\n",
" 'Own Consumption (Standby or Night) ', 'Total Cable Losses ',\n",
" 'PV energy (AC) minus standby use ', 'Feed-in energy ',\n",
" 'Inverter 1 to Module Area 1: Own Consumption (Standby or Night) ',\n",
" 'Inverter 1 to Module Area 1: PV energy (AC) minus standby use ',\n",
" 'Inverter 2 to Module Area 1: Own Consumption (Standby or Night) ',\n",
" 'Inverter 2 to Module Area 1: PV energy (AC) minus standby use ',\n",
" 'Unnamed: 58'],\n",
" dtype='object')"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"file_name = 'Riyahd_raw.csv'\n",
"df = read_csv(file_name)\n",
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
"remain_column = ['Time','PV energy (AC) minus standby use ']\n",
"energy_row_name = remain_column[1]\n",
"\n",
"df = df[remain_column]\n",
"df[energy_row_name] = df[energy_row_name].str.replace(',','.').astype(float)\n"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"770594.226863267"
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum_energy = df[energy_row_name].sum()\n",
"sum_energy"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1975.882632982736"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum_energy / 390"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": [
"group_size = 15\n",
"df['group_id'] = df.index // group_size\n",
"\n",
"sums = df.groupby('group_id')[energy_row_name].sum()\n",
"sums_df = sums.reset_index(drop=True).to_frame(name = 'Energy')"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<bound method NDFrame.head of Energy\n",
"0 0.0\n",
"1 0.0\n",
"2 0.0\n",
"3 0.0\n",
"4 0.0\n",
"... ...\n",
"35035 0.0\n",
"35036 0.0\n",
"35037 0.0\n",
"35038 0.0\n",
"35039 0.0\n",
"\n",
"[35040 rows x 1 columns]>"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sums_df.head"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Time\n",
"0 2023-01-01 00:00:00\n",
"1 2023-01-01 00:15:00\n",
"2 2023-01-01 00:30:00\n",
"3 2023-01-01 00:45:00\n",
"4 2023-01-01 01:00:00\n",
" Time\n",
"35035 2023-12-31 22:45:00\n",
"35036 2023-12-31 23:00:00\n",
"35037 2023-12-31 23:15:00\n",
"35038 2023-12-31 23:30:00\n",
"35039 2023-12-31 23:45:00\n"
]
}
],
"source": [
"\n",
"start_date = '2023-01-01'\n",
"end_date = '2023-12-31'\n",
"\n",
"# 生成每天的15分钟间隔时间\n",
"all_dates = pd.date_range(start=start_date, end=end_date, freq='D')\n",
"all_times = pd.timedelta_range(start='0 min', end='1435 min', freq='15 min')\n",
"\n",
"# 生成完整的时间标签\n",
"date_times = [pd.Timestamp(date) + time for date in all_dates for time in all_times]\n",
"\n",
"# 创建DataFrame\n",
"time_frame = pd.DataFrame({\n",
" 'Time': date_times\n",
"})\n",
"\n",
"# 查看生成的DataFrame\n",
"print(time_frame.head())\n",
"print(time_frame.tail())\n"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(35040, 1)\n",
"(35040, 1)\n"
]
}
],
"source": [
"print(sums_df.shape)\n",
"print(time_frame.shape)"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
"# sums_df['Time'] = time_frame['Time']\n",
"sums_df = pd.concat([time_frame, sums_df], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Energy\n",
"Time \n",
"2023-01-01 00:00:00 0.0\n",
"2023-01-01 00:15:00 0.0\n",
"2023-01-01 00:30:00 0.0\n",
"2023-01-01 00:45:00 0.0\n",
"2023-01-01 01:00:00 0.0\n"
]
}
],
"source": [
"sums_df.set_index('Time', inplace=True)\n",
"print(sums_df.head())"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [],
"source": [
"max_value = sums_df['Energy'].max()\n",
"sums_df['Energy'] = sums_df['Energy'] / max_value\n"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
"def save_csv(df, filename, columns):\n",
" tmp_df = df.copy()\n",
" tmp_df[columns[1]] = tmp_df[columns[1]].round(4)\n",
" with open(filename, 'w', newline='') as file:\n",
" writer = csv.writer(file)\n",
" writer.writerow(columns)\n",
" for index, row in tmp_df.iterrows():\n",
" time_formatted = index.strftime('%H:%M')\n",
" writer.writerow([time_formatted, row[columns[1]]])\n",
" \n",
" print(f'The file is written to {filename}')\n",
" \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The file is written to Riyahd.csv\n"
]
}
],
"source": [
"save_csv(sums_df, 'Riyahd.csv', ['Time', 'Energy'])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "pv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

79
read_data/convert_data.py Normal file
View File

@@ -0,0 +1,79 @@
#!/usr/bin/env python
# coding: utf-8
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
import csv
def generate_min_df(mins = 15):
end = 60/mins * 24
start_date = '2023-01-01'
end_date = '2023-12-31'
all_dates = pd.date_range(start=start_date, end=end_date, freq='D')
all_times = pd.timedelta_range(start='0 min', end=f'1435 min', freq=f'{mins} min')
date_times = [pd.Timestamp(date) + time for date in all_dates for time in all_times]
time_frame = pd.DataFrame({
'Time': date_times
})
return time_frame
def save_csv(df, filename, columns):
with open(filename, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Time', 'PV yield[kW/kWp]'])
for index, row in df.iterrows():
time_formatted = index.strftime('%H:%M')
writer.writerow([time_formatted, row[columns[1]]])
print(f'The file is written to {filename}')
def read_csv(filename):
skip_rows = list(range(1, 17))
data = pd.read_csv(filename, sep=';', skiprows=skip_rows)
return data
def process(file_name):
df = read_csv(file_name)
city = file_name.split('_')[0]
remain_column = ['Time','PV energy (AC) minus standby use ']
energy_row_name = remain_column[1]
df = df[remain_column]
df[energy_row_name] = df[energy_row_name].str.replace(',','.').astype(float)
sum_energy = df[energy_row_name].sum()
group_size = 15
df['group_id'] = df.index // group_size
sums = df.groupby('group_id')[energy_row_name].sum()
sums_df = sums.reset_index(drop=True).to_frame(name = 'Energy')
pv_energy_column_name = 'PV yield[kW/kWp]'
sums_df = sums_df.rename(columns={'Energy': pv_energy_column_name})
time_frame = generate_min_df(15)
sums_df = pd.concat([time_frame, sums_df], axis=1)
# sums_df.set_index('Time', inplace=True)
# max_value = sums_df[pv_energy_column_name].max()
sums_df[pv_energy_column_name] = sums_df[pv_energy_column_name] / 390.
sums_df[pv_energy_column_name] = sums_df[pv_energy_column_name].round(4)
sums_df[pv_energy_column_name].replace(0.0, -0.0)
sums_df.to_csv(f'{city}.csv')
# save_csv(sums_df, f'{city}.csv', ['Time', 'Energy'])
if __name__ == '__main__':
city_list = ['Riyahd', 'Cambodge', 'Berlin', 'Serbia']
for city in city_list:
print(f'Processing {city}')
file_name = f'{city}_raw.csv'
process(file_name)
print(f'Processing {city} is done\n')

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

35041
read_data/factory_power1.csv Normal file

File diff suppressed because it is too large Load Diff

0
run.sh Normal file
View File

16
xlsx2csv.py Normal file
View File

@@ -0,0 +1,16 @@
import pandas as pd
excel_file = 'factory_power1.xlsx'
sheet_name = 'Sheet1'
df = pd.read_excel(excel_file, sheet_name=sheet_name)
start_date = '2023-01-01'
df_power = pd.read_excel(excel_file,
header=None,
names=['FactoryPower'],
dtype={'FactoryPower': float})
times = pd.date_range(start=start_date, periods=len(df_power), freq='15min')
df_power['Time'] = times
df_power = df_power[['Time', 'FactoryPower']]
df_power.to_csv('factory_power1.csv', index=True)